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ABSTRACT 

Ttis report descr ibes  the  f i r s t  resu l t s  of an investigation into tte bas ic  ProQerties 
of tLe radiation-induced d e i e c t s  111 silicoo. r t i e  report is divided into tour maia sectioas 
Jeal ing,  resQectively,  sitl. lrieasure tieats of e x c e s s  carrier lifeti Qes, aajor i ty-carr ier  con- 
celi trations and )nobilities, electron spin resoaance,  and theriaally stiloulated conductivity. 
Lifetiine ileasure netits are described; the .let!lods i i icluJe ?ulse-injection, so la r  cell spec-  
tral  response,  and yulseci Van-de-Graatt injection. Lifetime v s  t e q e r a t d r e  d a t a  indicate  a 

defect  leve l  in  n-ty3e s i l icon located 0.18 e v  below the coilductioii band. E v i d e x e s  oi trap- 
Gin; are described, and resu l t s  usi:ig material frorri co*ai.iercial so la r  cells are  d iscussed .  
&esis t ivi ty- tnot i l i ty  measureiirents i n  n-type s i l icon  conf i ra  the location of a de tec t  level  
at the same posit ion iii the h a d  gap, but the  indentity ot t te recoinbinatiori and carrier- 
removal c e n t e r s  at ttis positioii is inconclusive.  Tke last t w o  ?ar ts  ot tt.e p o g a i n  have 
bee.1 confined to develo2.nent of tec5niques a d  e*1ui2zieat; botk electroii spill resoliarice 
and tlier,nally st imulated conductivity reyuire high iustra.uerltal resolution and sensi t ivi ty .  
Spin resonances  associated Nith t h e  pevious1;T kno wv11 defec ts  in ti-tyce s i l i con  Lave been 
s e e n  and are  described. 

... 
111 



i l e  o'ljective of tLis ,xo;ra.u is a tetter unJerstaiuLig 
of tbe 'xisic poperties ot ti,e iefects chat are 2roouceci i n  sil- 
icon a;iJ other setniconductors by nuclear radiation. fke ulti- 
inate Loa1 is a reductiori ok the radiation Ja I a,e silsce:-cit;ility 
of clevices SUCL a s  soiar cells t! at are macle frola t' ese ltaterials. 
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1. INTRODUCTION 

T h e  discovery i a  1958 of the Vaii- Allen radiation surrounding the ear th  h a s  s t i m d a t e d  
a great dea l  of research and engineering effort on  t h e  probletns of radiation damage to semi- 
coliductor materials and devices.  A-nong seioicolid uctor dev ices  the .nost damase  suscep t ib l e  
are those which, l ike  so la r  cells, d e e e d  OP loog mioority carr ier  l i fe t i4nes or diffusion 
lengths. In ear l ier  work under t!-e Qresent contract  a n  extensive s tudy w a s  waJe  of tbe de- 
terioration which s i l icon solar cells ex2eriencec.i under monoenergetic electroa,  p o t o n ,  al2ha 
particle, and  ultraviolet irradiation. Tbe r e s u l t s  of t h i s  investigation have been reported 
in detai l  in  previous re2orts. A l t t o q t  a.n$e statistics were ohtaineci on the damage rate  
as a function of all measurable cell ,xmlneters, no conclusive cr i ter ia  could be found by 
means of n!rict- da.nage resis tant  cells could be se l ec t ed  from an average group of cells. 
The current effort re f lec ts  a change in  e.nz!iasis fro,li the original device-property s tudy to 
an investigation of t5e b a s i c  character is t ics  of radiation de fec t s  i n  silicon. Several  phases  
of the  study, including electron-spin resonance, resistivity-,-no!>ility, and irinority carrier 
lifetime, wi l l  be descr ibed in  tke folloaing s e c t i o n s  of ttis report. In additioil to t!iese p t a s e s  
pepa ra to ry  work h a s  been doiie on s tudies  of surface :netallograpty, t h e r a a l l y  st i-nulated 
l o  N teln2eratare coaductivity a d  :.lass s p e c t r o g a p h i c  analysis.  
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1 1 .  LIFETIME 

A straight forw arif for :nul at ion of the ; enerat  ioo-re corn kinat ion process  in  semi conductors 
when tte reco.nbiiiation occurs  through energy l e v e l s  i n  the  forbiaden gap l e a d s  to a set oi 
coupled differential  equat ions w:,ict descrihe tlie rate  at wkics recoaLitiation occurs  i n  t e r m  
of t h e  e x c e s s  carrier concentratiohs,  reco.iil,ination center  concentration, capture  c r o s s  section, 
etc. AltIiough ear ly  treat  nents of t l e  probleir. da te  back at least LO 1939, the  first  s t u d i e s  wb.icli 
resulted in  solut ions to the equat ions uilder cer ta in  rest r ic ted condi t ions did not appear  until 
the  well-known resu l t s  of iall( ’1 and Shockley and  Read(2) were pu5lisl:ed i n  1952. Shockley- 
Kead treated the case of equilibriu .I deneration-recoiriFJination via a s ingle  recombination 
level,  for tt-e spec ia l  case or s.nal1 irijection anci low concentratioii of recoinhination centers.  
T h e s e  ear ly  theoretical  s tud ies  p o v i d e d  the s t i n u l u s  for a great  dea l  of subsequent  experi- 
mental and theoretical work. Exact  solutioris to t h e  trarisient recorntination problem have 
been found under s ~ d l  ilijection conditions, and approximate so lu t ions  for moderately higl. 
iiijectioii levels .  Tte case oi t ~o inde imdel i t  ty2es  of center  existin;; sinrultaneously !,as 
been studied, and a s ingle  ceiiter 52vin; severa l  ionization states !,oth Nithin the forbidden 
s a p  h a s  keen considered 4 t h  the h l p  of electroii ic computers. 

8 In the notation of St-ockley ana Xeacl, which is now uliiforinly adopted, the capture  
r a t e s  for e lec t rons  and holes a r e  giveii by 

011 the  assuqt ioi i  tha t  ttte injection leve l  is l o w  and the trap concentration is srcldll 
compared Nith the majority carrier concentration they obtained a n  expression for the lifetime 
uhder equilibriu‘n excitation-recorntination coiiditions. 

P 
L A P  1 4 .  - - .  
n* 

A_--- * b e  page 19 for a l is t  of definitions of the symbols used. 
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where ro, the  lifetime under vanishingly small injection is given by to + "') + fIoo (Po + P I )  
no + Po no + Po 

l o  = rpo 

T h e s e  express ions  and  what follows are spec i f ica l ly  for n-type material; the equivalent 
express ions  for p-type a re  obtained by interchange of n and p subscr ipts .  

Under similarly restrictive assumptions regarding the s igna l  l eve l  and trap concen- 
tration S a n d i f ~ t d ( ~ )  h a s  obtained an expression for the t ransient  lifetime, 

and under moderately high injection conditions the  expression obtained by W e r t h e i n ~ ( ~ )  is 

If more than one  type of independent center  is present, then one would expect  the 
resul t ing lifetime to be  

where hP 1 + -  
1 

B l a k e m ~ r e ( ~ )  h a s  been ab le  to obtain good experimental fits between lifetime measure- 
ments made i n  boron-doped p-type silicon and equat ions  (6) and (7). 

For ordinary sil icon in  the extrinsic region the fac tors  no and p, a r e  practically 
temperature independent. The  lifetime t e r m s  rpo and rno have a slow temperature dependence 
(varying approximately as T ) but t h e  chief temperature var ia t ions occur  in  n l  and p r  % 
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=-(E, - E,) /bT 
n l  = H N ,  

N, a t d  N, also have a s low (T3’*) temperature variation, .but the resul t ing l i fe t imes 
i n  (2), (3), (4) or (6) are dominated by the exponential  terms i n  (8). 

In previous reports a series of lifetime measurements which were made by observing 
the  reverse  t ransient  behavior of p-n junctions w a s  described. In t h i s  method the  junction 
is given a large current pulse  i n  the  forward direction, and the decay  of the  open circui t  
voltage immediately following the  current pu lse  obeys  the relation V = V, - . (6) 

T h i s  method provides a quick and convenient measurement of the  minority carrier lifetime 
in t h e  lighter-doped side of the  junction, but unfortunately requires  a high injection leve l  
i n  t h e  region immediately next to the junction. A second method of determining the minority 
carrier l ifetime by measuring the diffusion length w a s  also described; t h i s  cons is ted  of fitting 
the  spec t ra l  response curves of shallow-junction solar  cells to the theory of Loferski and 
W y ~ o c k i , ( ~ )  from which the diffusion length in  the base  region of the cell could be calculated.  
T h e  fact tha t  the minority carrier lifetimes determined by t h e s e  t w o  methods did not a lways  
agree w a s  possibly due to t h e  low injection leve l  under which the spec t ra l  response  w a s  
measured, and possibly due to the  fact that one  measurement y ie lds  the t ransient  lifetime, 
and the other g ives  the lifetime under equilibrium excitation-recombination conditions.  

e r  

Since there h a s  been considerable theoret ical  treatment of the excess-carr ier  life- 
time, both for the simple case of low injection, and a s ingle  recombination level ,  and for 
more general  s i tuat ions,  a considerable  portion of the effort in the  present  contract  h a s  t e e n  
directed to a s tudy  of the behavior of thelifetime as a function of irradiation flux, sample 
temperature, and injection level  i n  samples of s i l icon of various res i s t iv i t ies  and impurity 
consti tuents.  

As a part of t h i s  program the RCA 1 Mev electron Van-de-Graaff h a s  been converted 
pulsed- beam operation by the addition of a post-acceleration e lec t ros ta t ic  deflection system. 
Using a mercury switch pulser to provide the  def lect ion p u l s e s  t h e  sys tem is capable  of 
complete beam switching in times of t h e  order of 10-9 second, l imitedonly by the t ransi t  
t i m e  of the electron beam through the deflection plates.  In its present  form the sys tem provides 
two additional methods for l i fe t ime measurement: observing the d e c a y  of the bombardment- 
induced conductivity and the decay of the open-circuit junction electro-voltage.  Both methods 
have  been examined, and a number of both n-type and p-type s i l icon spec imens  have  been 
s tudied i n  de ta i l  using the  bombardment-conductivity decay  method. Most of the samples  were 
in  the  1-3 ohm-cm resis t ivi ty  range, which was  chosen  to allow a comparison with pervious 
published results.  

4 



T h e  pulsed-beam system is shown schematical ly  in  Fig.  1 and some representative 
conduct ivi tydecay curves are  shown in Fig. 2. 

The  resu l t s  of lifetime v s  temperature measurements on a number of samples  a re  
shown i n  Figs .  3 through 9. Several  interesting fea tures  a re  immediately apparent. F igures  
3 and 4, .for example, show two specimens tha t  were c u t  froin the same original crystal  but 
i n  different thicknesses .  T h e  ini t ia l  l ifetimes are  different i n  the two cases ( in  the  .018" 
specimen r w a s  i n  e x c e s s  of one  microsecond; i n  the  .005" sample  it w a s  about 0.4 micro- 
second). T h i s  difference is taken to be an indication of the importance of surface recoinbination 
in  the  unirradiated thin specimens,  and  probably also i n  the thick specimens.  The  k h a v i o r  
after irradiation is relatively similar in  the two cases, provided there  a r e  sufficient defec ts  
introduced for bulk recombination to t ioainate surface recombination. T h e  sample shown in 
Fig. 3 w a s  measured before irradiation and after t w o  s u c c e s s i v e  exposures  e a c h  alnounting 
to 1.0 x 10 l5 electrons per a n 2 .  The  sample shown in Fig. 4 w a s  exposed f i r s t  to 2.5 x 1OI4 
and then to 5 x 10 l4 electrons/cin *. The activation energies appear  to be s l ight ly  different 
in the  two samples  (0.15 and 0.17-0.18 ev) but there w a s  no apparent change in  AE in e i ther  
sample on the two s u c c e s s i v e  irradiations. 

Figure 5 shows the r e s u l t s  tha t  were obtained with two spec imens  of arsenic-doped 
material. T h e  preirradiation curves for the two are pract ical ly  coincident,  t h e  post-irradiation 
activation energ ies  are the same, and the magnitudes of the post-irradiation l ifetime are  
cons is ten t  with the measured f luxes i n  the t w o  cases. 

Figure 6 shows t w o  different pieces  that were cut  from the base  of a commercial 
p/n so la r  cell, o n e  of which was proton-irradiated and one of which was electron-irradiated. 
Two points should be noted with regard to t h e s e  samples-  the defect  leve l  appears  to be 
the  same in the two cases, and is lower in energy (0.10 to  0.11 ev) than in  other 11-type 
samples  that were studied. T h i s  particular cell w a s  found to he unusually damage-susceptible 
during the proton irradiation (9, = 9 x 109 protonslcm2). The combination of low lifetime 
act ivat ion energy and high solar cell damage suscept ibi l i ty  m a y  De significant,  and w i l l  be 
the subjec t  of additional measurements as  tlie work progresses.  

Figure 7 shows t h e r e s u l t s  in phosphorus-doped material, and Fig. 8 shows pulse- 
inject ion resu l t s  in  another proton-irradiated cell. 

A sample of high resis t ivi ty  n-type material  w a s  s tudied for comparison with the 
1-3 ohn-cm material. T h i s  sample showed s t rong evidence of single-level trapping (see 

Fig.  9) which masked the recombination center behavior. 

5 



A complete a n a l y s i s  of the  lifetiine measurements w i l l  require data on the manner 
in  which the injection level  in f luences  the resul ts ,  but a rough picture of the final resul t  
may be obtained from an  examination of the relatively low-level inject ion shown i n  the pre- 
vious figures. From equat ions (2) and (3, i n  n-type s i l icon the lifetime v s  temperature should 
obey e i ther  

(9) 
" 1  

"0  

r = rpo(I + -) 

if t h e  defec t  leve l  lies in the  upper half of the band gap or 

r =  r (I+--) rRO P I  

PO no 
PO r 

if t h e  defec t  leve l  lies in the lower half of the band gap. 

In the case of Fig. 4, for example, the  resu l t s  c a n  best be accounted for i n  terms of 

equat ion (9), ,which s u g g e s t s  that  the defect  lies in the vicinity of 0.17 e v  below the bottom 
of the  conduction band. T h i s  resul t  is i n  agreement N i t h  the r e s u l t s  of Galkin et a1(8) and 
in  disagreement with Werthei~n.(~)  

In addition to a aore conclusive identification of the posit ion of the major defect  
level,  the  l ifetime v s  injection leve l  measurement a re  important to verify the nature of the 
recombination process  (s ingle  leve l  vs multiple level, for example). 

6 



II I s  RESIST1 V ITY-MOB1 L I T Y  

il APPARATUS 

T h e  equipment designed for l o w  telnperature irradiations of samples  is descr ibed 
below. T h e  apparatus  permits the viewing of the  beam distribution over the a rea  occupied 
by the  sample, measurement of t h e  electron beam current in  a Faraday cup, rapid insertion 
and extraction of the  sample from the beam and interruption of tire b e a m  during measurements 
of the  Hall  constant  in  s i t u .  A cross-section diagram of the  apparatus  is shown in Fig. 10. 
T h e  principal par t s  of the apparatus  are  identified by letters. 

Section A is a auxill iary cooling jacke t  which surrounds the main dewar resevoir B. 
T h e  salnple is surrounded by copper radiation shields;  o n e  extending downward from A and 
the other at Du T h e s e  radiation sh ie lds  are s lo t ted  so that they also act as a beam collimator. 
A res i s tance  heater  E permits the  copper salnple mounting s t r ip  F to be heated above the 
temperature of the bath. 

The  sample mounting s t r ip  contains t w o  holes  a c r o s s  one  of which the sample is 
mounted alid the attier is l i f ted back to permit observation of the beam profile.. Ei ther  one  
of t h e s e  holes  can be posit ioned in  the electron beam by means of the double bellows G and 
spring P. T h e  spring is able  to support t h e  structdre i n  its upper posit ion when the s p a c e  
b e t g e e n  the bel lows is filled with a i r  at at:xospheric pressure. When th is  s p a c e  is evacuated 
during bombardment, the bellows contract, and the dewar A is lowered, and therefore the 
sample holder inoves to a posit ion where the  f i rs t  hole  is exposed  to the electron team. 

When the upper bellows M is evacuated by a forepump, the pressure is equal ized between 
d and G causing the spr ings P to raise thedewar and posit ion the salnple 5older so that 
the  first  hole is exposed to the electron beam. T h e  system can be cycled rapidly between 
these  two posi t ions by means of an electrically operated valve which al ternately e x p o s e s  
the s p a c e  between the bellows M to the a t a o s p h e r e  and to the  forepump vacuum. 

A electromagnet 0 whose a x i s  is concentr ic  with t h e  b e a m  permits measurements 
of Hall  coefficient. At sui table  intervals of flux the beam is in te rupted  by means of the 
shut ter  L and measurements of the Hall  coefficient and e lec t r ica l  res is t ivi ty  are  made. 

7 
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T h e  s i l icon crys ta l s  usedin  these experiments were grown from quartz crucibles  by 
the usual Czochralski  method. Experiments are  also being done on floating zone ‘n’ and ‘p’ 
s i l icon which have a much lower oxygen content for comparison with these  resul ts .  

T h e  specimens were ultrasonically cu t  in to  s tandard Hall  bridges s u c h  that the (111) 
face w a s  normal to the  a x i s  of the bombarding particle. T h e  specimens were polished to the 
final sizes s i n c e  measurements were less erratic than with e tched  surfaces.  Ohmic contact  
to t h e  specimen w a s  accomplished by alloying d o t s  onto the arms of the specimen and then 
soldering the  measuring wires directly to t h e s e  a r m .  Temperature of the specimen w a s  deter- 
mined by soldering a thermocouple to one arm of the  specimen. Using Freon 22 for cooling 
the electr ical  res is t ivi ty  and Hall  coefficient were ~i ieasured at 240°K before bombardment. 
Bombardment with electron f luxes of - 2 x 10 l 4  electrons/cm*/sec,  heated the specilllens 
very rapidly so that the bombarding temperature w a s  300%. After the electron b e a m  w a s  

interrupted the measurements were repeated when the temperature had dropped to the reference 
point. 

For detect ing small changes i n  carrier concentration the e lec t r ica l  res is t ivi ty  is more 
sens i t ive  than the Hal l  coefficient. If we assume the mobility is not changed by small  bom- 
bardments t h e  change i n  carrier concentration An = Ao/ep. T h e  number of car r ie rs  removed 
i s n  ( p1 - p,’/pl where no is the init ial  carrier concentration and p and p are  the  respect ive 
res i s t iv i t ies  before and after bodardment .  T h e  assum2tion of bombardtnent independent 
mobility seeins  to be justif ied for the temperatures and carrier concentrat ions employed here. 
Changes  of 30% i n  the carrier concentration deterlnined i n  the above manner produced no 
de tec tab le  change in  the Hall mobility. However, at lower temperatures where ckarged im- 
purity scat ter ing becomes more important than lattice scat ter ing the Hall  mobility and hence 
the conductivity inobility drops markedly with bombardment. At l iquid nitrogen temperature 
the carrier removal ra te  m u s t  be calculated froin changes  in  the Hall  coefficient. 

1 

Prior  to bombardment at the  higher energ ies  the  specimens were subjected to a 

‘conditioning’ bombardment at energ ies  below t h e  threshold for bulk damage, Changes  in  
the electrical conductivity occur  here and are thought to be d u e  to changes in  the  surface 
states. 

Figure 11 shows the carrier removal in  n-type s i l icon bombarded with 300 KEV elec- 
trons. Figure 12 is the same plot for p-type s i l icon,  but i t  should be noted tha t  the  a b s c i s s a  
is compressed by a factor  of ten. However, the carrier removal ra te  is not necessar i ly  the 
same as the defec t  introduction rate. The posit ion of the Fermi leve l  determines the number 
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of reruoval centers  that  are occupied, the determination of which requires  carrier concentration 
measurelnents as  a function of temperature. Also, e v e n  though the reinoval sites a a y  a l l  he 

occup2ied, the total nuaber  of carr iers  removed is less at teiiiperatures below the saturation 
range. $?hen t h i s  condition prevai ls  t h e  ratio of the carrier concentration before and after bow- 
Eardu.ent is more i,nportant than the ndlcber of carr iers  re-noved. 

The  teiiiperature dependence of carrier concentration for n-type s i l icon  before and 
after irradiation is showti in  Fig. 13. In the unirradiated sample the impurity donors remain 
ionized down to -,, 150% which produces an  essent ia l ly  constant  carrier concentration. 
After irradiation a “step,”  wkich is a Zneasure of the acceGtors introduced, appears  in  the 
curve. As the t e q e r a t u r e  decre?srs,  the Ferini level  moves to dard the  conduction band and 
in  doing so it “sweeps” t!:rougli the defect leve l  responsible  for carrier removal. T h e  defect 
leve l  fills up and i n  doin2 so rezioves electroils froin the conduction band. In non-degenerate 
Lnaterial 

.. 

Then the number of defect  sites occupied by e lec t rons  is 

where ct is the energy ok the  defect level. 111 tke saturat ion region t5e iiuinber of carr iers  
;neasured by ttLe Hall  constant  

is n = No - N, -, No i f  ;iiaterial is not heavily coiupensated. When d e f e c t s  are  introduced the  
measured cslrrier concentration is n = No - Nt- .  d y  coinbinin2 these  three equat ions w e  get  
a quadratic in  n: n2 + ( N t  - N, + N ,  e“) n - Nc ND e x  = 0 where x = ( c t  - c c ) / k T .  T h e  expres- 
s ion  may be used to solve for E - c C .  For simplicity w e  car1 ca lcu la te  t h i s  AE in the following 
aanner .  When E .= c t  

f 
t 

N t  
n =- N, e x p [ ( c t  - cC) /CT]  and n = No - - 

2 
so that 

t 
E ,  - E 

N ,  - N,/2 kT 
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and by determining the  temperature at which half f i l l ing of the t raps  occurs  the energy level 
is obtained directly. The  value obtained for the removal level  is E, - 0.19 e v  at 240°K. At 
t h i s  temperature only 38% of the  removal sites are  effective in  removing carriers.  For p-type 
material  the leve l  lies deeper  in the gap, ,- ( E v  + .30)ev, and t h e  removal sites are a lways 
fi l led at th i s  temperature. Figure 14 shows the  rate at which carrier removal centers  are intro- 
duced i n  n and p-type s i l icon assuming each center  cap tures  one  carrier. F o r  the  300 KEV 
e lec t rons  the  damage rate a s  measured by the introduction of carrier removal centers  is about 
a n  order of magnitude greater in n-type than in  p-type. T h e  respect ive introduction r a t e s  for 
n and p type s i l icon being 8.7 x c m - l  and 7.45 x crn-l. 

PROTON RESULTS 

Specimens of n and p-type sil icon were irradiated with 1.7 Mev protons to a total flux 
of 5 x 1014 protons/cm*. F igures  15 and 16 show the reciprocal of the Hall  constant  plotted 
aga ins t  temperature. A s  a resul t  of bonibardment the curves  a r e  displaced downward due to 

the  introduction of carrier removal centers. T h e  removal sites a r e  fi l led completely even  at 

room temperature, and the rat io  of carrier concentrat ions before and af ter  bombardment remains 
very nearly constant  with temperature. Therefore, t h i s  s u g g e s t s  that  the carr ier  removal sites 
must lie iurther than 0.20 from ei ther  band edge  in both n and p-type material. Although the 
fraction of carr iers  removed,40% of t h e  original carrier concentration, is about  the same for 
both the n and p samples,  the p-type had a larger number of carr iers  removed than the n-type. 
T h e  introduction ra te  for p and n-type being 5.3 cm-I and 1.7 crn-l. T h i s  is in contrast  with 
electron damage where the n-type rate is an  order of magnitude higher than the p-type rate. 
Proton damage measurements are being repeated and extended to determine where t h e  removal 
l e v e l s  a re  posit ioned and to check  the introduction rates.  

Figure 17 shows the ratio of the Hall  constant  before bombardment to that  af ter  bom- 
bardment (or alternatively the  rat io  of carrier concentration af ter  bombardment to that  before) 
for proton and electron bombarded n-type sil icon. Both had about the same carrier concentration 
before bombardment - 1.5 x 10 l 5  elec./cm3. T h e  difference between the two as descr ibed 
above is well i l lustrated.  
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I V .  ELECTRON SPIN RESONANCE OF IRRADIATION 
DEFECT CENTERS I N  SEMICONDUCTORS 

INTRODUCTION 

T h e  electron sp in  resonance spectra  of irradiation defec t  cen ters  in  semiconductors 
have many properties i n  common with ESR (electron sp in  resonance) s p e c t r a  observed in 
unirradiated material. Therefore, a brief survey of ESg i n  unirradiated semiconductors w i l l  
be given, 

T h e  f i r s t  resonance observed in  s i l icon *as that of free e l e c t r o n s ( l O )  and e lec t rons  
bound to shallow donor impurities.(’ l )  The latter resonance a r i s e s  from the extra  donor elec- 
tron which d o e s  not take part in  the covalent bonding of the crystal  and i t  is only observed 
at low temperatures when the donor atoms a r e  deionized. T h e  observed resonance corresponds 
to a n  electron sp in  s = 1/2 and h a s  a g value close to the free electron value,  

i 

In addition the s ing le  l ine  corresponding to S = 1/2 is s p l i t  by the hyperfine inter- 
act ion of the donor nucleus.  For example, the resonance spec t ra  of the  phosphorus donor 
which h a s  a nuclear sp in  1 = 1/2 c o n s i s t s  of t w o  l i n e s  separated by 43 d a w s ,  The  A s  
donor with 1 = 3/2 h a s  a four l ine  spectrum. There is a further hyperfine interact ion between 
the donor e lectron and the  surrounding Siz7 nuclei. T h i s  interaction is responsible  for the  
l inewidth of the dono; resonances.  T h i s  is a character is t ic  of in homoGeneously broadened 
l ines .  T h e  spin-latt ice relaxation and dipole-dipole i nteraction limited l ine- width is very 
s m a l l .  However, the randomly oriented nuclear s p i n s  of the Si29 nuclei  produce a much larger 
l inewidth for the overal l  system of spins.  

T h e  sp in  lattice relaxation t i m e s  of the  donor e lec t rons  is very long at low ternper- 
atures (seconds  to hours i n  the l iquid helium range). T h e  saturation behavior of such  s y s t e m s  
h a s  been studied by Portis.(l2) The imaginary or absorption component of the r.f. suscep-  
t ibil i ty s a t u r a t e s  very e a s i l y  but the dispers ion component d o e s  not saturate .  Therefore, the  
dispers ion s ignal  is invariably measured i n  these  s tudies .  Por t i s  also shows that  if magnetic 
field modulation is used the recorder wil l  trace out a n  absorption curve rather than the  usual  
der ivat ive of a dispers ion curve, at least i f  the  external  experimental  parameters are  adjusted 
for ad iaba t ic  fast p a s s a g e  conditions. 

The  unresolved hyperfine structure of the Si 29 nuclei  h a s  been resolved by Feher (  3, 

using the  electron nuclear double resonance technique (ENiIOR). 
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Early attempts to observe hole resonance or resonance of acceptors  i n  seniiconductots 
5 ,  In order to o!)serve were unsucessful.  However, more recent attempts have succeeded.(  

acceptor  resonances  it is necessary to apply a uniaxial s t ra in  to the crystal  to remove the 
degeneracy of valence band at k = 0. It  has been shown that  t h i s  degenercy will l ead  to a 

broadening of the acceptor resonance linewidth to the extent  tha t  observation of acceptor 
resonance is impossible  unless  th i s  degeneracy is removed. 

T h e  f i r s t  s tud ies  of irradiation danage  centers  were carried ou t  by Bemski(16) and 
Watkins et al(’ ’1 i n  electron irradiated n-type sil icon. The  dominant center  which appears  
in  pulled n-type Si was thoroughly studied by Watkins and Corbett, .who named i t  the SiA- 
center. They  showed that the defect was  connected with oxygen impurit ies present in t h e  
pulled crystal .  According to their  nodel an inters t i t ia l  oxygen atoin combines with a vacancy 
created by electron irradiation to produce a subst i tut ional  oxygen defect. Spill resonance of 
t h i s  defect  is observable  because the defect can accept  on electron which g i v e s  r i se  to sp in  
resonance. T h i s  corresponds to a net acceptor leve l  .17 e v  below the  conduction band. In 
order for the  resonance to be observable the teniperature must be sufficiently l o w  so that elec- 
t rons from the donor atom drop dowr t o  the defect  level.  

T h e  work of Watkins and Corbett demonstrated the importance of inpur i t ies  in  t h e  
formation of s t a b l e  damage centers  at room temperature. They  found that for f loating zone 
Si which contains  less oxygen than pulled Si (- 10 l6 per c1n3 coapared  to - 10 l8 cm3 for 
pulled Si) the A-center did not appear.  A new center  which they ca l led  the SiE-center is 
created and is identified a s  a defect arising from a donor atom-vacancy combination.(18) 
They  identify a third type defect w!iich does not depend on impurit ies present  i n  the crystal .  
T h i s  is the divancy (Si C- and Si J-center), a s tab le  combination of t w o  vacancies .  At ro0.n 

temperature the number of these  defec ts  i s  only 5% of the Si A-center defects in pulled 
n-type Silicon. 

A limitation on the ESR technique for studying radiation damage is that  the defect  
must  be a b l e  to accept  an unpaired electron for t h e  observation of sp in  resonance. It should 
be poss ib le  to observe a defect  with a hole (by analogy with the  observation of sp in  resonance 
of ho les  bound to acceptors);  no s u c h  defect resonance h a s  been observed as yet, however. 

Another technique for studying radiation damage is the observation of ESR due to transit ion 
metal impurit ies in semiconductors before and after irradiation. In t h i s  case the resonance 
a r i s e s  from the paramagnetism of the d she l l  of the transit ion metal and d o e s  not necessar i ly  
depend on accept ing a n  extra e lectron at low temperatures. 
damage would be observable through the change in  the ESK spectrum brought about by the 
change i n  crystal  e n v i r o m e n t  of the impurity, presu.nably through vacancy-impurity interaction. 

T h e  effect of radiation 

12 



EXPERIMENTAL 

SENSlTl VI TY CON SI DE RAT1 ONS 

T h e  nature of ESR resonance of irradiation produced defec ts  requires  the u s e  of a 

high sensi t ivi ty  spectrometer. For example, to observe the Si A-center, e lec t rons  must be 
supplied by the donor atoms. Thus,  the maxiinurn observable number of A-centers is equal  
to the  number of donor atoms. For  1 oh;n-crr; Si t h i s  is No = 5 x 1015/c.n3. T h e  amount of Si 
naterial used is limited by reasonable  irradiation t imes  and the  perturbation of the Si on the 
microwave cavity. A typical  volwne of Si used in  th i s  Rock is 0.1 cm3. Therefore, the nuliller 
of defect  celi ters -- 5 x 1014. 

The sensi t ivi ty  of ESK spectrometers is usually specif ied as t h e  minimum detec tab le  
number of s p i n s  observable  at room temperature using the inaximum or nost favorable micro- 
wave power. Under t h e s e  conditions our s?ectro:neier m i n g  homodyne operatioa and a magnetic 
field nodulation frequency of 400 cps has a sensi t ivi ty  such  that 

N m i n  = 2 x 1012hN 

where N m i n  = minimum detectable number of s p i n s  for a s ignal  to noise  
ra t io  S/N= 1, and a f i l ter  t h e  constant  of 3 seconds.  

A H  = linewidth i n  gauss  

T h e  above figure w a s  deterinined by measuring the  s ignal  to noise  ratio of ttie resonance 
from a small ruby crystal  with a known Cr concentration. 

When the  spectrometer is used to s tudy radiation damage defec ts  the sens i t iv i ty  is 
reduced i n  severa l  ways. In general, lower power l e v e l s  m u s t  be used because of saturation 
effects. Furthermore, the magnitude of the susceQtibi l i ty  s ignal  depends on external  experi-  
mental parameters, such  as  magnitude and frequency of magnetic field modulation and ra te  
of magnetic f ie ld  sweep and i t  is not always poss ib le  to operate  under conditions where the 
suscept ibi l i ty  s ignal  is maximum. 

In order to increase  the sensit ivity a superheterodyne system w a s  recent ly  added to 

the spectrometer. T h i s  allows operation a t  low power l e v e l s  while still maintaining good 
sensit ivity.  Also,i t  reduces  the amount of crjstal noise  reaching the detection amplifier. 
A s  yet the sens i t iv i ty  obtainable using the superheterodyne sys tem h a s  not been equal  to 

its theoretical  value. The proble'n seem to Le noise  introduced by vibrations in  the systeiii, 
particularly with liquid helium leaking into the microwave cavity. T h e s e  problems will be 
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pursued further. However, .the sensi t ivi ty  of the instrument is now sufficient for the  study 
of irradiation defects of comparable density to the A-center. F o r  th i s  center  the s ignal  to 
noise  ra t io  now obtained is approximately 100. 

EXPERIMENTAL RESULTS 

Most of the experimental work to date h a s  been on n-type pulled Si crystals .  In th i s  
material  the  dominant defect  is t h e  Si A-center. T h e  phosphorus donor resonance i n  n-type 
1 ohm-crn s i l icon  is shown in Fig. 18. The two phosphorus hyperfine l i n e s  are separa ted  
by 43 g a u s s  and have a linewidth of approximately 3 gauss .  T h e  resonance l ine  between 
the phosphorus l i n e s  is from a small sample of OPPH used to calibrate the spectrometer 
sensit ivity.  At room t e q e r a t u r e  th i s  DPPH sample h a s  a s ignal  to noise  ration of 300. 

Figure 19 shows the same phosphorus samples  after irradiation with 800 KEV elec- 
trons, q5 = 5 x 10l6 electrons/cm2. The samples were .010" thick and irradiated on both 
s i d e s  to insure  uniform irradiation damage. I t  can be s e e n  that the phosphorus hyperfine 
l i n e s  are reduced i n  inagnitude and t h e  Si A-center defect now appears  between the two 

phosphorus l ines .  Further irradiation would i n c r e a s e  the .nagnitude of the phosphorus reso- 
nance as e lec t rons  bound to phosphorus atoms drop down to the A-center. T h e  sharp  l ine  
in the  middle of the A-center is from conductioii e lec t rons  i n  a small (0.3 mg) sample of Si 
doped with 10 l8 phoslcm3. I t  is used as a field marker and for spectrometer calibration. 

Figure 20 shows the A-center for a sample of As-doped Si irradiated with 800 KEV 
e lec t rons  with 4 = 10 l7 elec/cd. Here t h e  A-center resonance is considerably larger  than 
the four As hyperfine l i n e s  a l s o  present in the salnple. In the figures shown the  s t ructure  of 
the A-center due  to non-equivalent sets of atom sites is 110t resolved. T h e  reason for t h i s  
is not yet known. 

A sample of n-type Si was irradiated with 2 inev protons with a flux of 5 x 1013 
proton/cm 2. No defect  resonance was found. However, the dollor resonance w a s  also not 
observed and it is felt that the  sample was too small and the  sensi t ivi ty  too l o w  to observe 
sp in  resonance. Further  proton irradiation on larger  Si samples  w i l l  be carried out. 

A small  sample of n-type GaAs was also irradiated with 800 KEV electrons,  #J = lo1' 
elec/cm2. GaAs is peculiar i n  that  the  donor e lec t rons  remain in  the conduction band even  
at l iquid helium temperatures. T h i s  means tha t  i f  a sufficiently la rge  sample is used to observe 
resonance the microwave losses of the  conduction e lec t rons  decrease  the cavi ty  Q to the 
extent  that  observation of ESR is impossible. T h e  GaAs w a s  irradiated i n  the hope that a 

defect leve l  created by the irradiation would trap all the  conduction e lec t rons  thereby rais ing 
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the resis t ivi ty  of the  sample. It w a s  found, however, tha t  the GaAs sample still remained 
excess ive ly  l o s s y  at l iquid helium temperature. However, .it is felt that for th i s  irradiation 
a s ignif icant  fraction of the sample a rea  was not covered by the electron beam and hence  
would remain lossy.  T h e  experiment wi l l  be tried again naking  sure  that the en t i re  a rea  of 
G a A s  is exposed to the beam. 

FUTURE WORK 

So far  the experimental work h a s  mostly been concerned with the A-center with 
emphas is  on improving the sensi t ivi ty  of the spectrometer. In the  future work. emphas is  
w i l l  be placed on the correlation of spin resonance da ta  with other measurements on irra- 
diated Si, particularly l ifetime measurements at room temperature. For example, one  c a n  ask,  
is t h e  A-center, which is the dominant defect observed by ESR i n  n-type pulled Si for elec- 
tron fluxes - lo1' cm2,  also responsible for recombination in  Si at room temperature at l o w  
flux l e v e l s  of s a y  lo1* cLn2. It is possible tha t  at these  low flux l e v e l s  other impurit ies 
present  in  the c rys ta l  may be more important in creat ing l ifetime limiting defects.  A way of 
studying t h i s  problem and at the same time studying new radiation d e f e c t s  is to dope Si with 
known impurities, for example the transition elements,  and to observe changes  i n  the  ESR 
spec t ra  of t h e s e  iinpurities with irradiation. Such changes  s o u l d  occur i f  the impurity is in- 
volved with the forination of a radiation defect. 

A search  will also be made for ESR spec t ra  from d e f e c t s  produced by proton irra- 

diation, i n  order to see'  what differences there a re  with respect  to electron produced defects. 
T h i s  is important to the comparisons made between the t w o  types of irradiation. 
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V. THERMALLY STIMULATED CONDUCTIVITY 

I 
I 

Thermally stilnulated light e a i s s i o n  was  f i rs t  used as an important tool in the study 
of trapping p rocesses  in  2hotoconductors in the inmediate  post-war years.(19) In these  s tud ie s  
the spec imens  were cooled and sufficient carr iers  were generated by l ight to  fill the exis t ing 
traps.  As the  temperature w a s  raised (with the light removed) the Fermi leve l  tnoved through 
a portion of the energy gap, and those levels which the Fermi leve l  traversed, e a i t t e d  their  
trapped carriers. Light was observed as the carr iers  subsequently ‘recombined. Fro!n the struc- 
of t h e  “glow curves” (l izht emission v s  teiilperature during the  heating cycle)  the energy l e v e l s  
and concentrations of the t rap may be calculated. 

.. 

A variation of the  “glow curve” method h a s  been uti l ized in more recent s t u d i e s  of 
photoconductors, when the sample is heated the e x c e s s  conductivity due  to thermal stimulation 
of charge carr iers  from the t raps  is observed.(20) Although th is  method h a s  not  yet been applied 
to the  s tudy of radiation de fec t s  in  semiconductors i t  is ideal ly  sui ted for observing de fec t s  
lying in the same half of the band gap a s  the F e r d  level,  and an effort is being made to uti l ize 
i t  in  aeasu remen t s  of high-resistivity silicon. In addition, s i n c e  gallium arsenide is of interest  
and avai lable  in  much hig5er res i s t iv i t ies  than s i l icon th i s  material w i l l  a l s o  be studied. 

Most of the equiplnent required for th i s  study is standard laboratory apparatus,  and 
is being assembled. A special ly  constructed dewar is avai lable  €or the study, .and is presently 
being tes ted for telnperature range and heating rate. 
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V I .  SUMMARY AND FUTURE PLANS 
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T h e  lifetime invest igat ion is now yielding information that is of fundamental importance 
both to the damage process  is sil icon and to the operation of so la r  cells. Tentat ive loca t ions  
of defec t  energy l e v e l s  have been deter.ained fro,n the present  data. A rapid accumulation of 
additional data, both on more sainples  and on the injection leve l  dependence in  the present 
samples  w i l l  help to clarify the r e su l t s  i n  three spec i f i c  regards. There is still some uncertainty 
iil the  tentative finding that the Jominant l eve l  in n-type s i l icon  lies in  the upper half of the 
band gap, and the u s e  of the single-level theory requires additional confirmation. There is 
considerable  in te res t  a l s o  it1 t he  a2parent difference betrveen the behavior of laboratory-grade 
sil icon and  samples  of si:nilar resist ivity and  doping that were prepared from commercial 
so la r  cells. 

The  carrier-removal experiments  indicate defec t  l e v e l s  which correspond roughly to 
those s e e n  in the lifetime work, but additional da t a  w i l l  be necessary  before a conclusive 
correspondance can be establ ished.  

The  development of a system for the study of electron sp in  resonance in irradiated 
sil icon h a s  been a inajor tasic, and is now nearing c o q l e t i o n .  The  ultimate capabi l i ty  of the 
apparatus, both in sens i t iv i ty  and resolution, is required. Future  work in  t h i s  a rea  w i l l  be 
concentrated on intensive study of the defec ts  that can be isolated.  The  inherent resolution 
of the spectrometer w i l l  suffice to isolate severa l  of the defects ,  but s e l ec t ive  anneal ing 
and heavy doping of samples  with known h p u r i t i e s  w i l l  he utilized. 
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An ; Ap 

LIST OF SYMBOLS 

Thermal equilibrium concentration of e lec t rons  and holes.  

Concentration of recombination c e n t e r s  

Concentration of c e n t e r s  occupied by e lec t rons  and holes,  respectively.  

Concentration of electrons and h o l e s  when t1,e Ferni Level  lies at the  
recombinatiori level. 

E x c e s s  concentracions of e lec t rons  and holes. 

Capture cross s e c t i o n s  of c e n t e r s  for e lec t rons  and holes,  respectively.  

Lifetime of e x c e s s  e lectrons i n  strongly p-type naterial. 

Lifetime of e x c e s s  holes  in strougly p-type material. 

Thermal veloci t ies  of electrons and holes.  

19 



m 
L 
0 oc 
t 
0 
W 

LL 
0 

w' 

w 
4 
b 

aa  n w  

LLQ 
0 



I 
I 
I 
I 
I 
I 
I 
I 
1 
1 
1 
1 
1 
i 
I 
I 
I 
I 
1 
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